

解热镇痛抗炎药

阿司匹林 (乙酰水杨酸)

复习旧课

- 1. 吗啡和哌替啶的作用、用途。
- 2. 吗啡和哌替啶的不良反应和禁忌症

0

下列哪些是吗啡的适应症

A 其他药无效的急性锐痛

B 癌症晚期的剧痛

₹ 分娩止痛

D 胃肠绞痛

哌替啶

〈卡马萨

E 神经痛

F 轻度癌痛

G 头痛、牙痛等慢性钝痛

阿司匹林的发展史

1.2000 多年前 古希腊 用柳树皮的液汁退热和止痛 2.1829 年 欧洲化学家从柳树皮中提取到"水杨苷"

3.1838年 意大利科学家由水杨苷制成水杨酸

4. 1859 年 德国化学家以苯酚为原料合成水杨酸

5.1875年 水杨酸第一次用于治疗风湿病

6.1893 年 德国拜耳公司 费利克斯· 霍夫曼 用

化 学方法合成了"乙酰水杨酸"。

7.1899年 林药粉,不久又制成阿司匹林药片。德国化学家德瑞瑟 将其命名为Aspirin(阿司匹林)。

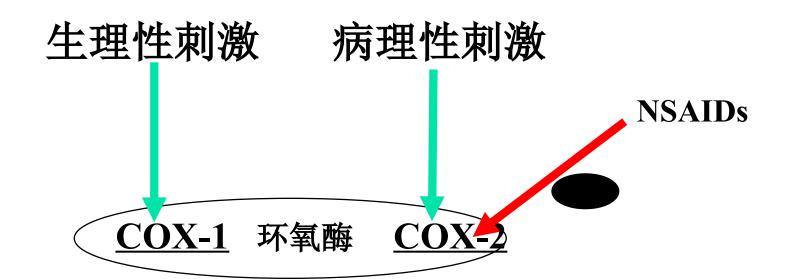
8.1971年 英国药学家约翰•万恩 获知并证实 上,其有抑制血小板聚集,对防止血管栓塞有明显功效

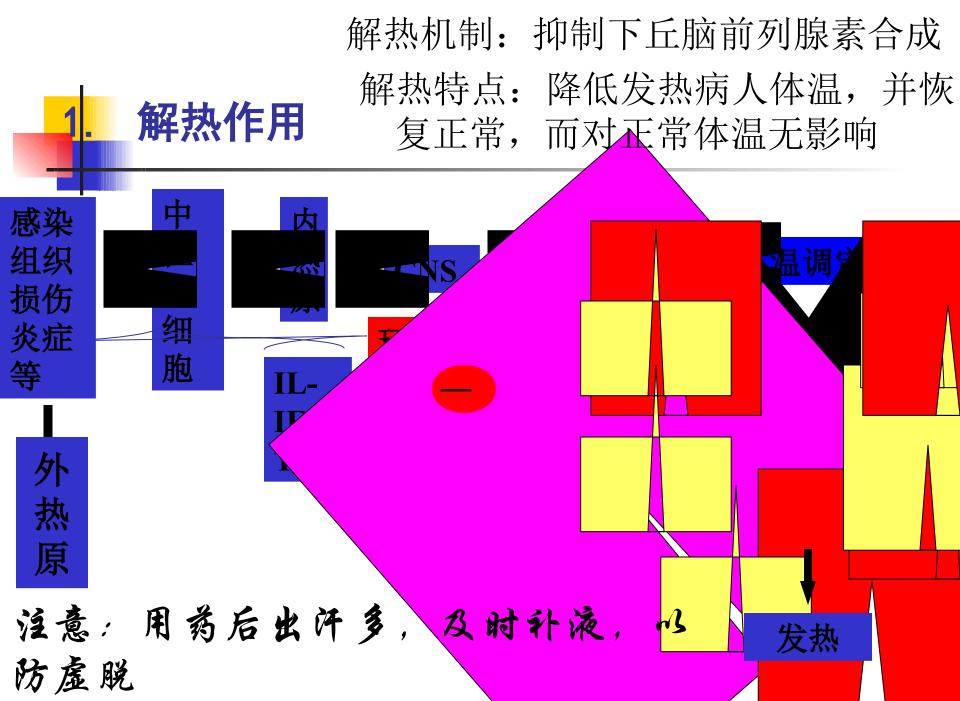
阿司匹林 (aspirin) 的作用

- 1. 解热
- 2. 镇痛
- 常用剂量 0.5g
- 3. 抗炎抗风湿(3-5g)
- 4. 抑制血小板聚集 (50-100mg/d)

作用机制

NSAIDs 共同的药理基础是抑制体内前腺素(PG)合成。

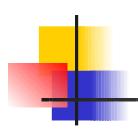

PG 是一族不饱和脂肪酸,广泛存在于人和哺乳动物的各种重要组织和体液中, 多种细胞都可合成 PG, 它参与多种**生理和病理**作用。



前列腺素(PG)的作用

- 合成和释放的增多,导致体温调定点的提高,体温升高(发热)。
- 2. PG 具有一定的致痛作用,同时还具有显著地提高 痛觉神经末梢对其它致痛物质的敏感性。
- 3. PG 参与炎症反应,使血管扩张,通透性增加,引起局部充血、水肿和疼痛。

1. 解热作用

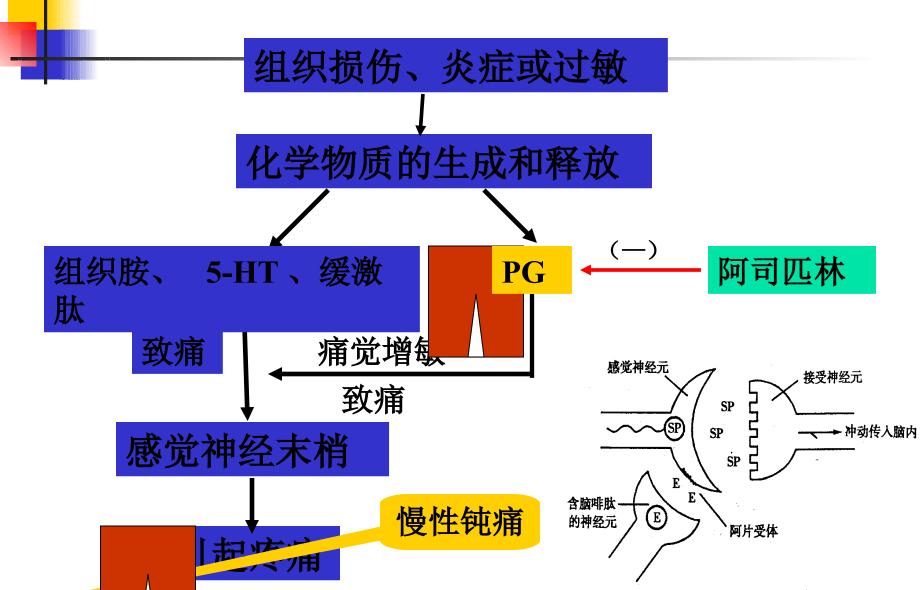

正常体温: 370C — 下丘脑体温调节中枢(产、散热)

发热的利与弊

益处: 提高机体防御机能, 热型有助诊断。

害处:不适,消耗体力,致惊厥。

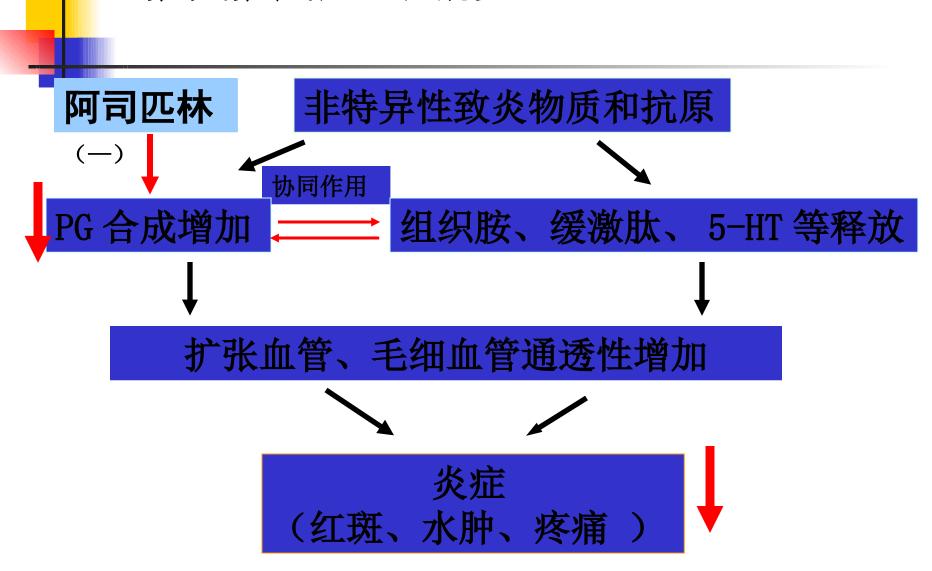
解热药:降低发热体温,须结合对因治疗。


有何不同?

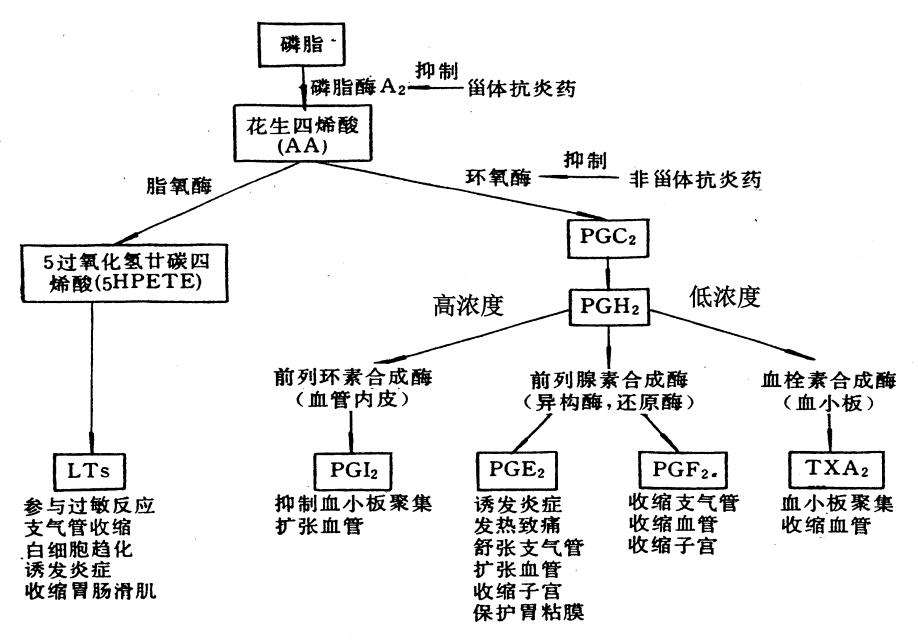
阿司匹林的解热作用 氯丙嗪的降温作用

阿司匹林解热作用与氯丙嗪降温作用比较

	阿司匹林	氯丙嗪
作用机制	抑制 PG 合成酶,减少 下丘脑 PG 的合成	抑制下丘脑体温调节中枢
作用特点	只降发热体温 降至正常水平	配合物理降温,可降发热、正常体温降至正常水平以一
用途	感冒发热、风湿热等	人工冬眠 、低温麻醉


2. 镇痛作用

解热镇痛药与镇痛药镇痛作用比较


	镇痛药 (吗啡)	解热镇痛药(阿司匹林)
作用部位	中枢	外周 (主)
作用机制	激动阿片受体	抑制环加氧酶(COX), 减少PG合成
镇痛特点	强大 任何疼痛都有效	中等强度 慢性钝痛
适应症	他药无效的急性锐痛	头痛、牙痛、关节痛等 慢性钝痛
不良反应	易成瘾,抑制呼吸	无成瘾性及呼吸抑制

3. 抗炎抗风湿(大剂量)

大剂量(3-5g)有明显消炎抗风湿,使急性风湿热患者退热,关节红、肿、痛缓解,血沉下降,是临床首选药之一。由于控制急性风湿热的疗效迅速而确实,故也可用于鉴别诊断。
对类风湿性关节炎也可迅速止痛,消退关节炎症,

减轻关节损伤、目前仍是对症治疗首选药。

花生四烯酸的代谢途径及主要代谢产物的生物活性

图

4. 抑制血小板聚集,预防血栓形成(小剂量长疗程)

小剂量: 抑制血小板中环氧酶(不可逆性抑制),血栓素 (TXA2) ↓,防止血栓形成。 大剂量: 抑制环氧酶(血管内皮),前列环素(PGI2) ↓,扩血管及抑制血小板聚集能力↓

治疗: 50-100mg/d, 防止血栓形成。

(1) 用于缺血性心脏病(心绞痛、心

梗)

,促进血栓形成。

不良反应

1. 胃肠道反应: (最常见)

原因: 较大剂量刺激 CTZ; 抑制 PGE2 合成

预防:注意适应症

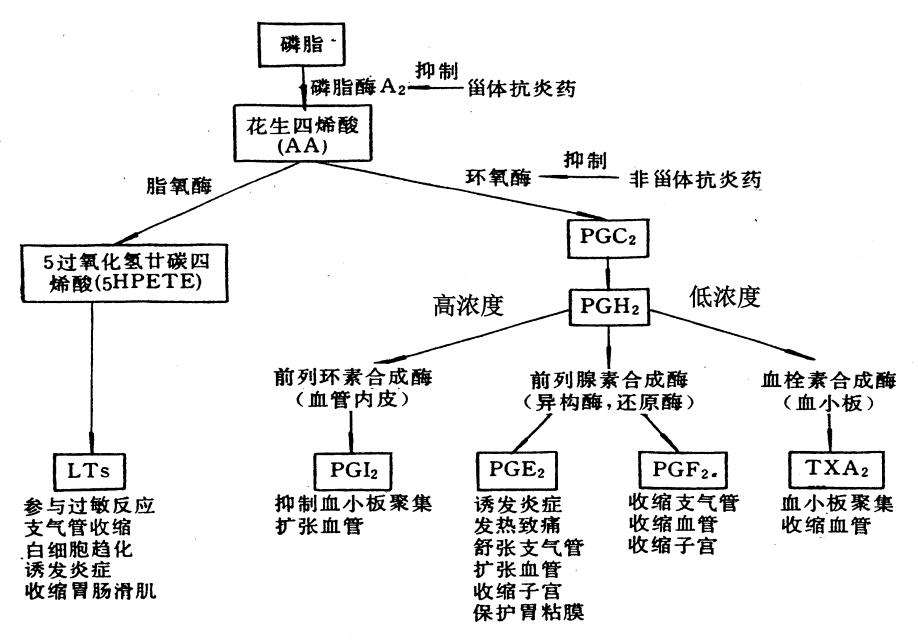
饭后服

同服抗酸药

改用肠溶片(勿咬碎)

合用米索前列醇

2. 凝血障碍: 出血或出血倾向


原因:抑制血小板聚集;长期用抑制凝血酶合成。

措施: 严重肝损害、低凝血酶原血症, VitK 缺乏症 忌用。术前 1 \sim 2 周停用。

3. 过敏反应

- 皮疹、休克;血管神经性水肿; "Aspirin哮喘"
- 原因:抑制 COX;白三烯(LT)增多
- 预防: 过敏体质、哮喘者禁用
- "Aspirin哮喘" (肾上腺素无效),用糖皮质激素 、抗组胺药

花生四烯酸的代谢途径及主要代谢产物的生物活性

图

4. 水杨酸反应: > 5g/d 易发生

表现:头痛、恶心、呕吐、视力及听力减退等

处理: 严重时, 停药, 碳酸氢钠静滴

5. 瑞夷(Reye)综合征

见肝功损伤合并脑病,病毒感染患儿易发生。

注意: 病毒感染患儿不宜用阿司匹林, 可用对乙

酰氨基酚代替

1. 作用

解热、镇痛、抗炎抗风湿

抑制血小板聚集

2. 用途

感冒发热、慢性钝痛等 风湿类风湿性关节炎的对症治疗

预防心肌梗死、脑栓塞等疾病 的发作

3. 不良反应

胃肠反应 凝血障碍 过敏反应 水杨酸反应 瑞夷综合征

苯胺类

对乙酰氨基酚(扑热息痛)

- 解热作用强,镇痛作用弱,几乎无抗炎抗风湿作用
- 非处方药,是很多感冒药的配伍成分,常用剂量较安全,胃肠反应轻,没有瑞夷综合征
- 但若剂量过大可致肝毒性。

其他类

布洛芬

解热、镇痛、抗炎作用强,胃肠反应轻

评价反馈

- 1. 阿司匹林的解热特点是
 - A. 使发热病人的体温降至正常水平以下
 - B. 使正常人体温降至正常水平以下
 - C. 配合物理降温可使体温降至正常水平以下
 - D. 使发热病人的体温降至正常
 - 2. 阿司匹林的解热机制是
 - A. 抑制下丘脑体温调节中枢
 - B. 激动阿片受体
 - C. 抑制下丘脑前列腺素合成和释放
 - D. 抑制外周前列腺素合成和释放

3. 阿司匹林不宜用于

- A. 感冒发热
- C. 胃肠绞痛
- 哗. 阿司匹林预防脑血管栓塞可采用
 - A. 大剂量突出治疗
 - C. 小剂量长疗程

- B. 关节痛
- D. 预防血栓形

- B. 大剂量长疗程
- D. 大剂量短疗程

5. 下列哪项不是阿司匹林的不良反应

A. 胃肠道反应

B. 水杨酸反应

C. 凝血障碍

D. 耳毒性

6. 服用阿司匹林引起的出血,应选用下列何药防治

A. Vc

B. VE

C. VB12

D. VK

作业

- 1. 列表比较阿司匹林解热作用和氯丙嗪的 降温作用有何不同
- 2. 列表比较阿司匹林和吗啡的镇痛作用有何不同